Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sophie H. Dale and Mark R. J. Elsegood*

Chemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England

Correspondence e-mail: m.r.j.elsegood@lboro.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C-C}) = 0.004 \text{ Å}$ R factor = 0.051 wR factor = 0.134 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of the title compound, $C_{15}H_{20}N_2O_8,$ has been redetermined using low-temperature single-crystal X-ray diffraction.

Comment

The title compound was originally synthesized by Chatterjee *et al.* (2000) by the crystallization of trimesic acid (TMA) from N,N-dimethylformamide (DMF) in the presence of benzene, and characterized using single-crystal X-ray diffraction at room temperature.

We have now synthesized the same 1:2 TMA:DMF adduct, (I), in the absence of benzene, characterizing the compound using low-temperature single-crystal X-ray diffraction. The same structure is found in both cases, ruling out the benzene co-solvent as an essential templating agent in the previous synthesis (Chatterjee *et al.*, 2000). Carboxylic acid–DMF $R_2^2(7)$ ring motifs (Etter, 1990; Etter & MacDonald, 1990; Bernstein *et al.*, 1995), utilizing strong O–H···O and weaker C–H···O hydrogen bonding (Desiraju & Steiner, 1999), exist at two of the three carboxylic acid groups, preventing the formation of the carboxylic acid head-to-tail $R_2^2(8)$ dimer motif.

The determination at low temperature (150 K) gives a slight improvement in the final *R* value (5.14% compared to 5.87%), with reductions of 1.5, 0.4 and 2.2% in the *a*, *b* and *c* unit-cell dimensions, resulting in an overall 4.1% contraction in the unit-cell volume compared to that determined at room temperature.

Experimental

The title compound was prepared as X-ray quality colourless crystals by the slow evaporation of an *N*,*N*-dimethylformamide solution of trimesic acid at room temperature.

Crystal data

$C_{15}H_{20}N_2O_8$	$D_x = 1.364 \text{ Mg m}^{-3}$
$M_r = 356.33$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1416
a = 16.6529 (18) Å	reflections
b = 14.4143 (16) Å	$ heta=2.5 extrm{-}26.4^\circ$
c = 7.2310 (8) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 90.719 \ (2)^{\circ}$	T = 150 (2) K
$V = 1735.6 (3) \text{ Å}^3$	Block, colourless
Z = 4	$0.27 \times 0.16 \times 0.02 \text{ mm}$

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 20 December 2002 Accepted 7 January 2003

Online 10 January 2003

Figure 1

View of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. Hydrogen bonding between TMA and DMF molecules is indicated by dashed lines.

Data collection

Bruker SMART 1000 CCD	3064 independent reflections
diffractometer	1664 reflections with $I > 2\sigma(I)$
ω rotation scans with narrow frames	$R_{\rm int} = 0.056$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 2001)	$h = -19 \rightarrow 19$
$T_{\min} = 0.971, \ T_{\max} = 0.998$	$k = -9 \rightarrow 17$
8644 measured reflections	$l = -8 \rightarrow 8$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.134$ S = 1.033064 reflections 240 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0475P)^{2} + 0.6362P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXTL

Extinction coefficient: 0.0005 (4)

Table 1 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O2−H2A···O7	0.79 (4)	1.73 (4)	2.507 (3)	168 (4)
O3−H3···O8	0.85(4)	1.75 (4)	2.599 (3)	176 (4)
$O5-H5\cdots O1^{i}$	0.86 (4)	1.88 (4)	2.732 (3)	171 (4)

Symmetry code: (i) $1 - x, \frac{1}{2} + y, -\frac{1}{2} - z$.

H atoms were positioned geometrically. The coordinates of those attached to oxygen were refined freely; all other H atoms were refined using a riding model. $U_{\rm iso}$ values were set to be 1.2 times $U_{\rm eq}$ for aryl and aldehyde H, and 1.5 times $U_{\rm eq}$ for methyl and hydroxy H atoms.

Data collection: *SMART* (Siemens, 1994); cell refinement: *SAINT* (Siemens, 1994); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and local programs.

We acknowledge the EPSRC for the provision of a studentship (SHD).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chatterjee, S., Pedireddi, V. R., Ranganathan, A. & Rao, C. N. R. (2000). J. Mol. Struct. 520, 107–115.
- Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond. Oxford University Press.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Etter, M. C. & MacDonald, J. C. (1990). Acta Cryst. B46, 256-262.
- Sheldrick, G. M. (2001). SADABS. Version 2.03. University of Göttingen, Germany.
- Siemens (1994). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.